a2 United States Patent

Metzler et al.

US009338193B2

US 9,338,193 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

REMOTE PROCEDURE CALL WITH
CALL-BY-REFERENCE SEMANTICS USING
REMOTE DIRECT MEMORY ACCESS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Bernard Metzler, Zurich (CH); Patrick
Stuedi, Zurich (CH); Animesh K.
Trivedi, Zurich (CH)

Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 421 days.

Notice:

Appl. No.: 13/907,360

Filed: May 31, 2013

Prior Publication Data

US 2014/0359145 Al Dec. 4, 2014

Int. Cl1.
GO6F 15/16
HO4L 29/06
GO6F 9/54
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)

HO4L 65/1069 (2013.01); GOGF 9/547
(2013.01)

Field of Classification Search
USPC ..o 709/228, 220; 370/389; 719/313
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,624,398 B2* 11/2009 Wangc.cccceenne GOGF 9/547
719/313
7,917,597 B1* 3/2011 Lentinicccccc.... GOGF 13/28
370/389
FOREIGN PATENT DOCUMENTS
CN 102546612 A 7/2012
OTHER PUBLICATIONS

Abstract of Chen et al., “A Fast RPC System for Virtual Machines”,
IEEE Transactions on Parallel and Distributed Systems, vol. 24 No. 7,
Jul. 2013. 1 page.

Mitchell, “Distributed Systems”, Data Communications: RPC &
Group Communications, 1999. pp. 1-23.

* cited by examiner

Primary Examiner — Tammy Nguyen
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Daniel Morris

(57) ABSTRACT

Embodiments relate to providing remote procedure calls
(RPC) with call-by-reference semantics using remote direct
memory access (RDMA). An aspect includes establishing a
session between a client and a server. A client session heap
memory and a server session heap memory are initialized
with a RDMA provider. A parameter is then stored in the
session heap memory. A handle for the parameter is passed to
the server which permits access to the parameter responsive
to an on-demand request from the server.

8 Claims, 14 Drawing Sheets

COMPUTER SYSTEM

28

16

30
”
UNIT

MEMORY 34

STORAGE
SYSTEM

PROCESSING
40
| T
i £
Y 2
l 20
10 /
DSPLAY 1o yreseacess | NETWORK ADAPTER |
1
\
EXTERNAL
DEVICE(S)

US 9,338,193 B2

Sheet 1 of 14

May 10, 2016

U.S. Patent

(8)30$1A30
NEINE
A /
7l
Y
¥3LYQY YHOMLIN @mo%_m&z_ > A8
\ A
0 AN S
|« 7
P - o
o Nm A 4
n“. 07 \ 1IN
J 2on ONISS300Nd
W3LSAS /
9V4018 9
ST
/
i ASOWIN 0
/
% WALSAS Y3LNdN0D

US 9,338,193 B2

Sheet 2 of 14

May 10, 2016

U.S. Patent

¢ Ol

A

Y

062" MOVLS YHOMLIN
\
07" anLS OdY ¥3IAYIS
\ 4
057" WYH90Yd YIS
002

MJVLS HHOMLAN
0§7—"
022" 4nLS Odd LN3I1d
012" Wyd90dd IN3I1D

US 9,338,193 B2

Sheet 3 of 14

May 10, 2016

U.S. Patent

¢ ol

[9 = 581 ‘004=0dl]

[= & ‘00}=0d]

r §

=0d]]

067" MOVLS MHOMLAN
[9= 80 ‘00;=00] | [y =2 00)
Y
0rz—"1 8NLS odY ¥3AY3S
A
@ = 59l .v =P
Y
{
067" 7 + 8 U3
J(ejujooju
00€

062"

MOVLS MHOMLIN

[9 = sa1 ‘00j=0dl]

Y

! [1 = & 00j=0d]

022"

(eurgms ooy jul

9=53)

p=e

012~

‘(e)qms o0} = sal ju|
F=e=

US 9,338,193 B2

Sheet 4 of 14

May 10, 2016

U.S. Patent

08—

0%

007

J— S J HA0N0Nd VNG ~(c)
“ ! \\ A
A “ ! \\
m “ Y , /
INORNEINES ~<0pt 8NLS O N3O (2
5 — ___
+ m L\ m
\|
vaH NYHOOMd YANES Ny ver NY490Md N3 ~<{lf
NOISS3S NOISS3S

097

US 9,338,193 B2

Sheet 5 of 14

May 10, 2016

U.S. Patent

[9 = 581 ‘00}=0dl] -
067" e]lC) 0 Y30NOYdYNQY ~
oo ~ [(ohwi=0"00j=0d] 0r
_ A m ! [(o)ye1=0 - $81'00) \"a A(0)ja1=0
[9=s81‘00j=0dl] “ ! ¥ ‘001=0d1] 9 u, __‘ '00}=0dl]
115 Oc B3NS ~<{bp lookms o= ~_gpy
I — / I
= S8l _ “ = ! - i
9 Vo | (0)eu=0 m 9=591 lo=0
o N \ (a0l
0 \1ef0 unal 0Sp [q0)ams ™00} = S31 U] IN_
u : }oao)oou - e (sloo neu=loolag | OV

006

US 9,338,193 B2

Sheet 6 of 14

May 10, 2016

U.S. Patent

A 4
NOISSTS 35010 8095~ —)
ALY
e EIN O 111334 Jdd 1098
VYO HILTNVEYd < [—
40 ONIHOL3A ————]
ONYA3A-NO N\-900S QY3 YWQY
JONFHI4TY A8 03SSVd ‘SHILINVV O 5098 -
1
VIYQ ALY [= 098 11153 0
DONHIF < [e —
e —
\-£093 QY3 YNQY
JONFY434 AS (3SSVd ‘SHAL TNVl Odd 2093
i /
1093
029 NOISS3S N3d0 019
EERNVA) ATV

009

>

LA
odd

TIVO
odd

NOISS3S
Yo%“_

US 9,338,193 B2

Sheet 7 of 14

May 10, 2016

U.S. Patent

. porm — o Y30 YINEY ~<5y
I / A
A ! \\
_ Y \\ Y
LS Odl B3NS <0t 8NLS dy INAO ~—(zb
A m _..
m Y m A
VaH YO0 MINES Ny Yo NY490d NI ~<0lp
0l NOISS3S 09 NOISS3S
00,

US 9,338,193 B2

Sheet 8 of 14

May 10, 2016

U.S. Patent

8 Ol

Do=sar‘ooz0d]
08y~ T B T D (57
ool i (O N O
[bo=sa1 ‘00j=0dl] _ Vioomodi] bo=sa 00j=04] 00100
anLs odd %“\/5@ -0t (0q0)qmis ooy -0z
“ g=linsal- "
] “ '}
Y0 =3 i (0)y8u=0 [jo=0
! \ '
{ (oo)ans™
_ _ [00)ams ooy
lqo {eweso -0 {gomau=lolgg | 0M
o Holao)oos v 0% / i
008

US 9,338,193 B2

Sheet 9 of 14

May 10, 2016

U.S. Patent

A y
NOISS3S 35010 8068~)
Y3LINVEYd LNdLNO s34 0a 1ogs—"
40 ONILIMM >
ONYW3A-NO N\-9063 ILIMM YHOY
| y,
IONTNTATM AG 03SSVd ‘SHILINYAYA I 5063 43
<
¥3LINYEVd LNdLNO 063 111534 Jad
40 ONILIMM >
ONVW3A-NO N\-£06S ILIMM YNaY
IONTHI13Y AG 03SSVd ‘SHILINYAY I 2063
AJ/ S
063
029 09
EERNA) NOISS35 NadO eV

006

>

>

Tv0
Add

TV
Add

>

NOISS3S
Add

US 9,338,193 B2

Sheet 10 of 14

May 10, 2016

U.S. Patent

06p—"1 < A N0t
\\: M m A
\\ Y \ “ “
8NLS Ody YIS ~<(p 8115 9cd LN (2t
_\ A m m A
m 4 y m y
AR NYHO04d¥INES Neqo a3k Y4904d INTD ~<0Lb
0l NOISS3S 09 NOISS3S

00

US 9,338,193 B2

Sheet 11 of 14

May 10, 2016

U.S. Patent

Ol

[(lgo)ei=s81

‘00J=0d] R
06r—"1 A < A R } ~
y g j [= & ‘00}=0d)] 0 m ey
[(foo)es =53 § . . “ m)\
‘00=0dl] ! [= & ‘00j=001] (Iqoes=sarooj=ad | i “ [= & ‘001=0d]
8NLS Y YIS ~<(hp [erbans o0 -2
! Q0= | IREL (Io)sas=sa ! m m :T B
" T
__ (Cunsennel
\ (g0 Meu wnja ~_ {(pnsaygebsaiug
" (g)ses Vewoour | 05 " 50l (plams 00} = sa1lg0 ™01

US 9,338,193 B2

Sheet 12 of 14

May 10, 2016

U.S. Patent

A A
TISNOSSI IS0 | ~
S >
. >
VIva 11NS3Y D —
40 ONIHOL34 avI¥YNaY 218"
ONYIIQ-NO >
N\-0715 S1INSTY Oy
IMVA AS 03SSYd ‘SHILINYYYA IdY 629 —
VIYa 11NS3Y — >)
40 ONIHOL3A — g
N O D ———
av34 YNQY 1218 -
N\-£71S JONTHIATY AS LINSTY O
INVA AG Q3SSVd ‘SHILINYYY I 7219
179
09 NOISS3S N3O 019

0cl

33TV

LEIN)

>

>

1Y
Odd

11V
Jdd

NOISS3S
odd

US 9,338,193 B2

Sheet 13 of 14

May 10, 2016

U.S. Patent

NERILA)
TVO O , - / ™
aN0J3S A/ g} 2d¥ 1SHl4
ISNOSTY DdY [3ONTH343M A9 ¥ 1INS 3]
913 ISNOJS3Y OdY
ERIEREEEN G613 1S3N0Y Oy
A8 Y Y31V 7619
LNdNIl 1S3N03Y Od
%13
233TIVD il P 337D
/
\ LE1S \
ol ¥ ¥313Wvdvd 40 INJINOD 4
9NIHOL34 ANY ONISSIDDY
0¢)

A A A
8ELS
\Y\‘
LE1S
L7
9€1S
‘/L
GeLsS
¥ELS
gel el 1€l
¢337V0 13310 ¥3TIVO

S

US 9,338,193 B2

Sheet 14 of 14

May 10, 2016

U.S. Patent

RENNA)
/ (
d Y3LINVaVd 40 LNILNOD LA
ONIHOL34 ONY ONISSFOOY Vel Odd 1Sy
&S [3ONTY3434 Ag
ISNOdSTY Odd d Y31 3vavd LNl
G1S 1SN0 OdY
T¥O 1S
0dy ISNOJSFY O
ONOJ3S #h1S
EENIA) —— \ > 13370
) Nvﬂw
z_ [3ONFY343 AG Nw_
d Y3LINYavd LNdNIT LSINDFY O
0%}

£el
¢33V

<

A\v

@WiS

N
£lS

N

el WIS gl
133TVO H3TIVO

S

US 9,338,193 B2

1
REMOTE PROCEDURE CALL WITH
CALL-BY-REFERENCE SEMANTICS USING
REMOTE DIRECT MEMORY ACCESS

BACKGROUND

The present invention relates generally to remote proce-
dure calls, and more specifically, to providing remote proce-
dure calls with call-by-reference semantics using remote
direct memory access.

A remote procedure call (RPC) is an inter-process commu-
nication that allows a computer program to cause a subroutine
or procedure to execute in another address space, such as on
another computer on a shared network, without the program-
mer explicitly coding the details for this remote interaction.
That is, the programmer writes essentially the same code
whether the subroutine is local to the executing program or
remote. During the early development of RPC, network band-
width was scarce, network latency was high, and central
processing unit (CPU) clock speed was increasing under
Moore’s law. Accordingly, RPC function calls were typically
defined over functions with simple signatures, which
accepted mostly base types as arguments, to avoid large data
transfers. This ensured that network transfer time was small
compared to function execution time. These functions, how-
ever, still required a significant amount of computation.

BRIEF SUMMARY

According to an embodiment of the present invention, a
method for providing remote procedure calls (RPC) with
call-by-reference semantics using remote direct memory
access (RDMA) is provided. The method includes establish-
ing a session between a client and a server. A client session
heap memory and a server session heap memory are initial-
ized with a RDMA provider. A parameter is then stored in the
session heap memory. A handle for the parameter is passed to
the server which permits access to the parameter responsive
to an on-demand request from the server.

According to another embodiment of the present invention,
a system for providing RPC with call-by-reference semantics
using RDMA is provided. The system includes a computer
processor and logic executable by the computer processor.
The logic is configured to implement a method. The method
includes establishing a session between a client and a server.
A client session heap memory and a server session heap
memory are initialized with a RDMA provider. A parameter
is then stored in the session heap memory. A handle for the
parameter is passed to the server which permits access to the
parameter responsive to an on-demand request from the
server.

According to a further embodiment of the present inven-
tion, a computer program product for providing RPC with
call-by-reference semantics using RDMA is provided. The
computer program product includes a storage medium having
computer-readable program code embodied thereon, which
when executed by a computer processor, causes the computer
processor to implement a method. The method includes
establishing a session between a client and a server. A client
session heap memory and a server session heap memory are
initialized with a RDMA provider. A parameter is then stored
in the session heap memory. A handle for the parameter is
passed to the server which permits access to the parameter
responsive to an on-demand request from the server.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and

10

15

20

25

30

35

40

45

50

55

60

65

2

are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a block diagram of a computer system
according to an embodiment;

FIG. 2 depicts a block diagram of a remote procedure call
(RPC) operation according to the conventional art;

FIG. 3 depicts an example of a RPC operation where input
and output parameters are transferred in-place with a RPC
request according to the conventional art;

FIG. 4 depicts a block diagram of a RPC operation that
passes of an input parameter by reference according to an
embodiment;

FIG. 5 depicts an example of a RPC operation that passes
of an input parameter by reference according to an embodi-
ment;

FIG. 6 depicts a message flow for a RPC with input param-
eter by reference according to an embodiment;

FIG. 7 depicts a block diagram of a RPC operation that
passes an output parameter by reference according to an
embodiment;

FIG. 8 depicts an example of a RPC operation that passes
of'an output parameter by reference according to an embodi-
ment;

FIG. 9 depicts a message flow for a RPC with output
parameter by reference according to an embodiment;

FIG. 10 depicts a block diagram of a RPC operation that
returns a result by reference according to an embodiment;

FIG. 11 depicts an example of a RPC operation 110 that
returns a result by reference according to an embodiment;

FIG. 12 depicts a message flow for a RPC with a result
parameter by reference according to an embodiment;

FIG. 13 depicts a block diagram and message flow of a
RPC splicing operation according to an embodiment; and

FIG. 14 depicts a block diagram and message flow of a
RPC tree operation according to an embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein are directed to providing
remote procedure calls (RPC) with call-by-reference seman-
tics using remote direct memory access (RDMA). An aspect
of embodiments includes establishing a session between a
client and a server. A client session heap memory and a server
session heap memory are initialized with a RDMA provider.
A parameter is then stored in the session heap memory. A
handle for the parameter is passed to the server which permits
access to the parameter responsive to an on-demand request
from the server.

Referring now to FIG. 1, a block diagram of a computer
system 10 suitable for RPC with call-by-reference semantics
using RDMA according to exemplary embodiments is
shown. Computer system 10 is only one example of a com-
puter system and is not intended to suggest any limitation as
to the scope of use or functionality of embodiments described

US 9,338,193 B2

3

herein. Regardless, computer system 10 is capable of being
implemented and/or performing any of the functionality set
forth hereinabove.

Computer system 10 is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system 10 include, but
are not limited to, personal computer systems, server com-
puter systems, thin clients, thick clients, cellular telephones,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud comput-
ing environments that include any of the above systems or
devices, and the like.

Computer system 10 may be described in the general con-
text of computer system-executable instructions, such as pro-
gram modules, being executed by the computer system 10.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system 10 may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located in both local and remote
computer system storage media including memory storage
devices.

As shown in FIG. 1, computer system 10 is shown in the
form of a general-purpose computing device, also referred to
as a processing device. The components of computer system
may include, but are not limited to, one or more processors or
processing units 16, a system memory 28, and a bus 18 that
couples various system components including system
memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system 10 may include a variety of computer
system readable media. Such media may be any available
media that is accessible by computer system/server 10, and it
includes both volatile and non-volatile media, removable and
non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
tem 10 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way
of'example only, storage system 34 can be provided for read-
ing from and writing to a non-removable, non-volatile mag-
netic media (not shown and typically called a “hard drive”).
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In such instances, each can be connected to bus 18 by
one or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program

10

15

20

25

30

35

40

45

50

55

60

65

4

modules that are configured to carry out the functions of
embodiments of the disclosure.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system 10 may also communicate with one or
more external devices 14 such as a keyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 10; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 10 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (1/0) interfaces 22. Still yet, computer system
10 can communicate with one or more networks such as a
local area network (LLAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system 10 via
bus 18. It should be understood that although not shown, other
hardware and/or software components could be used in con-
junction with computer system 10. Examples include, but are
not limited to: microcode, device drivers, redundant process-
ing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

FIG. 2 depicts a block diagram of a RPC operation 200
according to the conventional art. The RPC operation 200
may include a client program 210, a client RPC stub 220, a
network stack 230, a server RPC Stub 240, and a server
program 250.

Conventional remote function calls are typically defined as
call-by-value, which means that the parameters are marshaled
and transferred together with the RPC request. With reference
to FIG. 2, the client program 210 calls the client RPC stub
220. The client RPC stub 220 marshals the parameters (i.e.,
packs the parameters into a message) received from the client
program 210 and sends the message from the client (i.e.,
caller) machine to the server (i.e., callee) machine via a net-
work stack 230. The server RPC stack 240 unmarshals the
received parameters (i.e., unpacks the parameters from the
message) and calls the server program 250. The reply from
the server program 250 to the client program 210 traces the
same path in the reverse direction. Accordingly, the RPC call
sequence 200 marshals parameters on the client (i.e., caller)
side and transfers the parameters with a RPC request to the
server (i.e., callee) side. The RPC is then executed on the
server (i.e., callee) side and the results are marshaled and
transferred back to the client program 210.

FIG. 3 depicts an example of a RPC operation 300 where
input and output parameters are transferred in-place (i.e.,
call-by-value) with a RPC request according to the conven-
tional art. As shown in FIG. 3, the client program 210 trans-
fers a parameter value ‘a’ (a=4) in-place with an RPC request
to function ‘foo’ (rpc=too) of the server program 250 via the
client RPC stub 220, network stack 230, and server RPC stub
240. The server program 250 executes the function ‘foo’ with
the received parameter value ‘a’ and transfers the RPC result
to the client program 210. In this example, the resulting
parameter value (res=6) is transferred from the server pro-
gram 250 to the client program 210.

US 9,338,193 B2

5

Contemporary RDMA-based networks offer high perfor-
mance throughput and latency together with one-sided read/
write semantics. Due to contemporary RDMA networks, net-
work latencies, and plateaued CPU clock speeds, it has been
comparably cheap to access remote memory. Accordingly,
embodiments disclosed herein leverage the cheap remote
memory access to implement on-demand parameter fetching
in RPC.

According to an embodiment, an RPC operation may be
defined as call-by-reference, where parameters are not passed
in-place but instead a handle is passed which allows a server
program to fetch parts of the parameter on-demand. An
embodiment is based on RDMA such that RPC parameter
handles can be used in concert with RDMA read operations to
fetch the actual value of the parameter. RDMA read executes
with ultra-low latency and without interrupting or scheduling
the caller according to an embodiment.

With reference to FIG. 4, a block diagram of a RPC opera-
tion 400 that passes of an input parameter by reference
according to an embodiment is shown. The RPC operation
400 may be performed by an embodiment of the processing
device 16 of computer system 10, as discussed above. The
RPC operation 400 of an embodiment may include a client
program 410, a client RPC stub 420, a RDMA provider 430,
a server RPC Stub 440, a server program 450, a client session
heap 460, and a server session heap 470.

According to an embodiment, a client (i.e., caller) and a
server may establish a session prior to the RPC operation 400.
The establishment of a session may include the initialization
of'a client session heap 460 and a server session heap 470 on
which a RPC function may operate. The client session heap
460 and the server session heap 470 may be initially popu-
lated with an empty memory parameter memory layout. The
client session heap 460 and the server session heap 470 may
be registered with the RDMA provider 430 during the estab-
lishment of the session.

Referring to FIG. 4, the client program 410 stores an input
parameter in the client session heap 460 according to an
embodiment. The client program 410 calls the client RPC
stub 420 to pass the input parameter (e.g., object) by reference
to the server program 450 viathe RDMA provider 430 and the
server RPC Stub 440. According to an embodiment, the pass-
ing of the input parameter includes a reference to the RPC
function in the server program 450 and a handle for the input
parameter. According to an embodiment, a RPC stub genera-
tor may distinguish between call by value and call by refer-
ence and produce stubs accordingly.

According to an embodiment, the server program 450
receives the handle for the input parameter and fetches the
input parameter on-demand from the client session heap 460
to perform the RPC function. The server program 450 may
access the client session heap 460 through a one-sided
RDMA read without interrupting the client (i.e., caller). The
RPC is then executed on the server side (i.e., callee side) and
the results are transferred back to the client program 410, via
the server RPC stub 440, the RDMA provider 430, and the
Client RPC Stub 420.

FIG. 5 depicts an example 500 of a RPC operation that
passes of an input parameter by reference according to an
embodiment. As shown in FIG. 5, the client program 410
creates and stores an input parameter to be passed by refer-
ence (e.g., obj(4)) in the client session heap 460 according to
an embodiment. The client program 410 then transfers the
input parameter ‘0’ by reference with an RPC request to
function “foo’ (rpc=foo) in the server program 450, via the

10

15

20

25

30

35

40

45

50

55

60

65

6

RDMA provider 430 and the server RPC Stub 440. According
to an embodiment, the input parameter ‘0’ is passed using a
handle (e.g., o=ref(0)).

According to an exemplary embodiment, the server pro-
gram 450 receives the handle for the input parameter and
fetches the input parameter on-demand from the client ses-
sion heap 460 to perform the ‘foo’ function. That is, field ‘a’
ofobject ‘0’ is fetched on-demand when being accessed using
0.getA(). The fetching of field ‘a’ of object ‘0’ is accom-
plished via RDMA read. The RPC is then executed on the
server side and the result (e.g., res=6) is transferred back to
the client program 410, via the server RPC stub 440, the
RDMA provider 430, and the client RPC Stub 420.

FIG. 6 depicts a message flow 600 for a RPC with input
parameter by reference according to an embodiment. As
shown in FIG. 6, a caller 610 opens a RPC session with a
callee 620, as shown in S601. The caller 610 initializes an
RPC call by passing RPC parameters by reference, as shown
in S602. The callee 620 fetches the input parameter data
on-demand via a RDMA read, as shown in S603. Once the
callee 620 has fetched the input parameter data on-demand,
the callee 620 execute the RPC function and return the RPC
result to the caller 610, as shown in S604.

According to an embodiment, the callee 620 may cache a
parameter state within the scope of a RPC session. Therefore,
on repeating RPC calls within the same RPC session, only
modified or updated parameters would have to be fetched by
the callee 620. Accordingly, on a repeating RPC call, the
caller 610 passes RPC parameters by reference, as shown in
S605. The callee 620 now only fetches on-demand the input
parameter data that has been updated or modified, as shown in
S606. Once the callee 620 has fetched the modified or
updated input parameter data on-demand, the callee 620
execute the RPC function and return the RPC result to the
caller 610, as shown in S607. The callee 620 may then close
the RPC session, as shown in S608.

With reference to FIG. 7, a block diagram of a RPC opera-
tion 700 that passes an output parameter by reference accord-
ing to an embodiment is shown. The RPC operation 700 may
be performed by an embodiment of the processing device 16
of computer system 10, as discussed above. The RPC opera-
tion 700 of an embodiment may include a client program 410,
a client RPC stub 420, a RDMA provider 430, a server RPC
Stub 440, a server program 450, a client session heap 460, and
a server session heap 470.

The client program 410 stores an output parameter in the
client session heap 460 according to an embodiment. The
client program 410 calls the client RPC stub 420 to pass the
output parameter (e.g., object) by reference to the server
program 450 via the RDMA provider 430 and the server RPC
Stub 440. According to an embodiment, the passing of the
output parameter includes a reference to the RPC function in
the server program 450 and a handle for the output parameter.

According to an embodiment, the server program 450
receives the handle for the output parameter and executes the
RPC function by modifying parameter fields in the client
session heap 460 on-demand. The server program 450 may
access the client session heap 460 through a one-sided
RDMA write without interrupting the client. The server pro-
gram then transmits the RPC result back to the client program
410, via the server RPC stub 440, the RDMA provider 430,
and the client RPC Stub 420.

FIG. 8 depicts an example 800 of a RPC operation that
passes of an output parameter by reference according to an
embodiment. As shown in FIG. 8, the client program 410
creates and stores an output parameter to be passed by refer-
ence (e.g., obj()) in the client session heap 460 according to

US 9,338,193 B2

7

an embodiment. The client program 410 then transfers the
output parameter ‘0’ by reference with an RPC request to
function “foo’ (rpc=foo) in the server program 450, via the
RDMA provider 430 and the server RPC Stub 440. According
to an embodiment, the output parameter ‘0’ is passed using a
handle (e.g., o=ref(0)).

According to an exemplary embodiment, the server pro-
gram 450 receives the handle for the output parameter and
modifies the output parameter on-demand in the client ses-
sion heap 460 to perform the ‘foo’ function. That is, the result
field of object ‘0’ is written on-demand when being accessed
by the server program 450 using o.setA(). The writing of field
‘a’ of object ‘0’ is accomplished via RDMA write. The RPC
result (e.g., res=ok) is transferred back to the client program
410, via the server RPC stub 440, the RDMA provider 430,
and the client RPC Stub 420.

FIG. 9 depicts a message flow 900 for a RPC with output
parameter by reference according to an embodiment. As
shown in FIG. 9, a caller 610 opens a RPC session with a
callee 620, as shown in S901. The caller 610 initializes an
RPC call by passing RPC parameters by reference, as shown
in S902. The callee 620 modifies the output parameter on
demand via a RDMA write according to the RPC function, as
shown in S903. Once the callee 620 has modified the output
parameter data on-demand, the callee 620 returns the RPC
result to the caller 610, as shown in S904. The RPC session
may continue with a subsequent RPC call (§8905-S907) until
the callee 620 closes the RPC session, as shown in S908.

With reference to FIG. 10, a block diagram of a RPC
operation 100 that returns a result by reference according to
an embodiment is shown. The RPC operation 100 may be
performed by an embodiment of the processing device 16 of
computer system 10, as discussed above. The RPC operation
100 of an embodiment may include a client program 410, a
client RPC stub 420, a RDMA provider 430, a server RPC
Stub 440, a server program 450, a client session heap 460, and
a server session heap 470.

The client program 410 calls the client RPC stub 420. The
client RPC stub 420 marshals the parameters received from
the client program 410 and sends the message from the client
machine to the server machine via a RDMA provider 430.
The server RPC stack 440 unmarshals the received param-
eters and calls the server program 450. The server program
450 then executes the RPC function, stores the result param-
eter in the server session heap 470, and passes the result (e.g.,
object) by reference to the client program 410, via the server
RPC stub 440, the RDMA provider 430, and the client RPC
stub 420. According to an embodiment, the client program
410 may then access the results field in the server session heap
470 on-demand. This access by the client is made using
RDMA read without interrupting the server.

FIG. 11 depicts an example of a RPC operation 110 that
returns a result by reference according to an embodiment. As
shown in FIG. 11, the client program 410 transfers a param-
eter value ‘a’ (a=4) in-place with an RPC request to function
“foo’ (rpc=foo) of the server program 450 via the client RPC
stub 420, network stack 430, and server RPC stub 440. The
server program 450 executes the function ‘foo’ with the
received parameter value ‘a’, stores the result parameter (e.g.,
res(6)) inthe server session heap 470, and passes the result by
reference (e.g., handle res=ref(obj)) to the client program
410, via the server RPC stub 440, the RDMA provider 430,
and the client RPC stub 420. According to an embodiment,
the client program 410 may then access parts of the RPC
results field (e.g., res=6) in the server session heap 470 on-

10

15

20

25

30

35

40

45

50

55

60

65

8

demand (e.g., res.getResult()) as the result object is de-
referenced. This access is done using RDMA read without
interrupting the server.

FIG. 12 depicts a message flow 120 for a RPC with a result
parameter by reference according to an embodiment. As
shown in FIG. 12, the caller 610 opens a RPC session with a
callee 620, as shown in S121. The caller 610 initializes an
RPC call by passing RPC parameters by value, as shown in
S122. The callee 620 returns the RPC result by reference, as
shown in S123. The caller 610 may then access the result
parameter on demand via a RDMA read, as shown in S124.
The RPC session may continue with a subsequent RPC call
(S125-S127) until the callee 620 closes the RPC session, as
shown in S128.

With reference to FIG. 13, a block diagram and message
flow of a RPC splicing operation 130 according to an embodi-
ment is shown. According to the RPC splicing operation 130,
call by reference parameters may uniquely encode a host and
memory address of each parameter. This allows building RPC
services that operate on parameters residing in session con-
texts of different physical machines across a data center.
Moreover, the RPC splicing operation 130 simplifies chained
RPC since parameters do not need to be copied according to
an embodiment.

According to a RPC splicing operation 130 of an embodi-
ment, a caller 131 may initiate a first RPC by issuing a RPC
request to a first callee 132, as shown in S134. The first callee
131 may respond to the request by returning a RPC result R by
reference, as shown in S135. The caller 130 may then initiate
asecond RPC by issuing a request to a second callee 133 with
input parameter R by reference, as shown in S136. The sec-
ond callee 133 may then access and fetch the content of
parameter R from the first callee 131, as shown in S137. The
second callee 133 may then responds to the second RPC call,
as shown in S138.

With reference to FIG. 14, a block diagram and message
flow of a RPC tree operation 140 according to an embodiment
is shown. The RPC tree operation 140 is a variant of RPC
splicing. RPC services may build tree-like structures where
the result of one RPC service is based on a series of sub-RPC
calls. According to an embodiment, calling by reference
allows the passing of parameters along the tree without hav-
ing to copy the parameter data.

According to the RPC tree operation 140 of an embodi-
ment, the caller 131 may initiate a first RPC by issuing a RPC
request to the first callee 132 with input parameter P by
reference, as shown in S141. In S142, the first callee 132 may,
in turn, issue a RPC request with input parameter P by refer-
ence to the second callee 133. The second callee 133 may
access and fetch the content of parameter P from the caller
131, as shown in S143, before responding to the first callee
132, as shown in S144. The first callee 132 may then respond
to the caller 131, as shown in S145.

According to embodiments disclosed herein, a caller does
not need to know which parts of the input parameters are
required by a callee’s RPC function and a callee does not need
to know which parts of the result is required by the caller.
Moreover, due to access on-demand according to embodi-
ments, data does not need to be marshaled as in the conven-
tional art. Embodiments potentially save data copies at both
the caller and callee. Additionally, embodiments potentially
save the serialization/de-serialization of parameters if both
the caller and callee operate in the same environment.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as

US 9,338,193 B2

9

well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiments were chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

Further, as will be appreciated by one skilled in the art,
aspects of the present disclosure may be embodied as a sys-
tem, method, or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present disclosure may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

10

15

20

25

30

35

40

45

50

55

60

65

10

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also

US 9,338,193 B2

11

be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. A computer-implemented method for a remote proce-
dure call (RPC) with call-by-reference semantics, compris-
ing: establishing, by a processing device, a session between a
client and a server; initializing a client session heap memory
and a server session heap memory with a remote direct
memory access (RDMA) provider; storing a parameter in the
client session heap memory of the client, wherein the param-
eter comprises a value stored at a memory address in the client
session heap memory; passing a handle for the parameter to
the server, wherein the handle comprises a reference to the
memory address of the parameter in the client session heap
memory; and permitting the server to access the value of the
parameter stored in the client session heap memory respon-
sive to an on-demand request from the server, wherein the
program code is further executable by the processor for:
caching a parameter state within a session; and responsive to
a repeating RPC within the session, reading only modified
parameters.

2. The computer-implemented method of claim 1, wherein
the on-demand request comprises a selected one of reading
the parameter and writing to the parameter.

3. The computer-implemented method of claim 1, wherein
the passing of the handle further comprises passing the handle
along a cascading chain of RPC requests without having to
copy the value of the parameter.

4. The computer-implemented method of claim 1, wherein
the passing of the handle further comprises passing the handle

10

15

20

25

30

12

along a tree-like structure, where a result of one RPC is based
on aseries of sub-RPC calls, without having to copy the value
of the parameter.

5. A computer program product for a remote procedure call
(RPC) with call-by-reference semantics, the computer pro-
gram product comprising: a non-transitory computer read-
able storage medium having program code embodied there-
with, the program code executable by a processor for:
establishing a session between a client and a server; initializ-
ing a session heap memory with a remote direct memory
access (RDMA) provider of the client; storing a parameter in
the session heap memory of the client, wherein the parameter
comprises a value stored at a memory address in the session
heap memory; passing a handle for the parameter to the
server, wherein the handle comprises a reference to the
memory address of the parameter in the session heap
memory; and permitting the server to access the value of the
parameter stored in the session heap memory of the client
responsive to an on-demand request from the server, wherein
the program code is further executable by the processor for:
caching a parameter state within a session; and responsive to
a repeating RPC within the session, reading only modified
parameters.

6. The computer program product of claim 5, wherein the
on-demand request comprises a selected one of reading the
parameter and writing to the parameter.

7. The computer program product of claim 5, wherein the
passing of the handle further comprises passing the handle
along a cascading chain of RPC requests without having to
copy the value of the parameter.

8. The computer program product of claim 5, wherein the
passing of the handle further comprises passing the handle
along a tree-like structure, where a result of one RPC is based
on aseries of sub-RPC calls, without having to copy the value
of the parameter.

